Optimizing the Biogeochemical Argo Float Distribution

Paul Chamberlain

Collaborators: Lynne Talley Bruce Cornuelle Sarah Gille Matthew Mazloff Erik Van Sebille

Unlocking the mysteries of the Southern Ocean

GO-BGC Global Ocean Biogeochemistry Array

What is a BGC Float?

How Many Argo Floats Do We Need and Where Should We Put Them?

Biogeochemical Argo

Sensor Types Latest location of operational floats (data distributed within the last 30 days)

October 2022

Considerations:

- Argo floats move around (sometimes a lot).
- The ocean has different scales of spatial and temporal variability
- To quantify the impact of Argo observations, we need to predict their future locations and the covariance of the fields they are measuring

DYNAMICAL MODELS PREDICT FLOAT **MOTION** POORLY

Talley et al. 2018

TRANSITION MATRIX FOR PLASTICS

)		- i	5		1	0		15

RESULTS: ARGO ARRAY PREDICTION

RESULTS: ARGO ARRAY PREDICTION https://argovis.colorado.edu/ng/

BGC Models Provide Insight

Oxygen

Temperature

BGC Models Provide Location Insight

Oxygen

SPATIAL SCALES OF BGC VARIABILITY

Oxygen

Salinity

Chlorophyll

3 × 10 ⁻⁵	4×10^{-5}	6×10^{-5}	10 ⁻⁴	
		(mol m ⁻³) ²		

METHODS: OBJECTIVE MAPPING Salinity

Chlorophyll

RESULTS: FUTURE ARGO FLOATS

RESULTS: MONTE CARLO DISTRIBUTIONS

Model Setup

All Depths: 14 levels 0-2000 m

All Variables:

TemperatureSalinity

ChlorophyllpH

• Oxygen

Global

Monte Carlo with Varying Float Densities

RESULTS: MONTE CARLO DISTRIBUTIONS

RESULTS: OPTIMAL ARRAY

Optimal Array Design: Constrain Anomaly

-1.060°E 120°W 60°W 0° 120°E -0.8 60°N S 30°N Mapping Error 0° 30°S -60°S -0.2 Nº 0° 120°W 60°W 60°E 120°E 0.0

RESULTS: OPTIMAL ARRAY

RESULTS: OPTIMAL ARRAY

 Constrained variance estimated for current Argo array and future Argo arrays Monte-Carlo distributions show that pH is the easiest and oxygen is the hardest **BGC** variable to constrain Optimal arrays have large distributions in subtropical gyres and reduced density in western tropical pacific